\qquad
\qquad
\qquad
\qquad

1 Introduction
Definitions
Known results

2 Cyclically 4-edge-connected cubic graphs
The planar case
Higher genera
Bounded face length
General cubic graphs

3 Future work \qquad
\qquad

Circumference

The circumference $\operatorname{circ}(G)$ is the length of a longest cycle.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A graph G is hamiltonian if $\operatorname{circ}(G)=|V(G)|$.

四aagt

On-Hei S. Lo, Jens M. Schmidt, Nico Van Cleemput. Carol T. Zamfirescu \quad Shortness coefficient of cyclically 4-edge-connected cubic graphs 4

Hamiltonicity of classes of graphs

- Tait conjectured in 1884 that every cubic polyhedron is hamiltonian.
- The conjecture became famous because it implied the Four Colour Theorem (at that time still the Four Colour Problem)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

$\begin{array}{lll}\text { On-Hei S. Lo, Jens M. Schmidt, Nico Van Cleemput. Carol T. Zamfirescu } & \text { Shorness coeficicient of cyclically } 4 \text {-edge-connected cubic graphs } & 7\end{array}$

Introduction Cyclically 4 -edge-connected Future work Deffintions Known results
Hamiltonicity of classes of graphs

How far is a class of graphs from being hamiltonian?

Shortness coefficient

The shortness coefficient of \mathcal{G} is defined as

$$
\rho(\mathcal{G})=\liminf _{G \in \mathcal{G}} \frac{\operatorname{circ}(G)}{|V(G)|}
$$

with liminf taken over all sequences of graphs G_{n} in \mathcal{G} such that $\left|V\left(G_{n}\right)\right| \rightarrow \infty$ for $n \rightarrow \infty$.
-
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0](2ares)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$$
\rho(\mathcal{G})=\operatorname{liming}_{G \in \mathcal{G}} \frac{\operatorname{circ}(G)}{|V(G)|}
$$

- $0 \leq \rho(\mathcal{G}) \leq 1$
- every graph in \mathcal{G} is hamiltonian $\Rightarrow \rho(\mathcal{G})=1$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Known results

Theorem (Moon and Moser, 1963)
The shortness coefficient of the class of 3-connected planar graphs is 0 .

Theorem (Tutte, 1956)
The shortness coefficient of the class of 4-connected planar graphs is 1 .

On-Hei S. Lo, Jens M. Schmidt, Nico Van Cleemput. Carol T. Zamfirescu \quad Shortness coefficient of cyclically 4-edge-connected cubic graphs $\quad 11$

Introduction Cyclically 4-edge-connected Future work Definitions Known results

Known results

Theorem (Bondy and Simonovits, 1980)

The shortness coefficient of the class of 3-connected cubic graphs is 0 .

Theorem (Walther, 1969)
The shortness coefficient of the class of 3-connected cubic planar graphs is 0 .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cyclically k-edge-connected

A graph G is cyclically k-edge-connected if for every edge-cut S of G with less than k edges at most one component of $G-S$ contains a cycle.

On-Hei S. Lo, Jens M. Schmidt, Nico Van Cleemput. Carol T. Zamirescu \quad Shortness coefficient of tyclically 4-edge-connected cubbic graphs $\quad 13$

Cyclically k-edge-connected

- For $k \in\{1,2,3\}$ being cyclically k-edge-connected and being k-connected are equivalent for cubic graphs.
$\square \mathcal{C} k$ is the class of cyclically k-edge-connected cubic graphs.
- $\mathcal{C} k \mathcal{P}$ is the class of cyclically k-edge-connected planar cubic graphs.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Known bounds

$\operatorname{circ}(G) \geq \frac{3}{4}|V(G)|$
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A new bound
Theorem (Lo, Schmidt, VC, and Zamfirescu)
$\rho(\mathcal{C} 4 P) \leq \frac{37}{38}$
Approach
- Find cyclically 4-edge-connected fragments such that (almost)
any intersection with a cycle misses some vertices.
- Combine these fragments to construct an infinite family of graphs
obtaining the bound in the limit.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A new bound

A new bound

 $H-a$ is non-hamiltonian

A new bound

- $\mathrm{H}-\mathrm{a}$ is non-hamiltonian
- $H-d$ is non-hamiltonian
- $H-a-b$ is non-hamiltonian
- $H-c-d$ is non-hamiltonian
- $H-a b-c d$ is non-hamiltonian

On-Hei S. Lo, Jens M. Schmidt, Nico Van Cleemput, Carol T. Zamfiriescu \quad Shortness coefficient of cyclically 4-edge-connected cubic graphs 23

On-Hei S. Lo, Jens M. Schmidt. Nico Van Cleemput. Carol T. Zamfirescu Shortness coefficient of cycicically 4-edge-connected cubic graphs 26

Higher genus

Theorem (Lo, Schmidt, VC, and Zamfirescu)
For every $g \geq 0$, the shortness coefficient of the class of cyclically 4-edge-connected cubic graphs of genus g is at most $\frac{37}{38}$.

Increasing the genus

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A fragment with arbitrary genus

A fragment with arbitrary genus

On-Hei S. Lo, Jens M. Schmidt, Nico Van Cleemput. Carol T. Zamirescu \quad Shortness coefficient of tyclically 4 -edge-connected cubic graphs

A fragment with arbitrary genus

A second fragment

On-Hei S. Lo, Jens M. Schmidt, Nico Van Cleemput. Carol T. Zamfiriescu Shortness coefficient of cyclically 4-edge-connected cubic graphs 35

A second fragment

- H is not hamiltonian
$\square H-a$ is not hamiltonian
$\square H-d$ is not hamiltonian

A second fragment

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A new bound
 Replacing each vertex of a 4-connected 4-regular planar graph on k vertices by this fragment results in a cyclically 4-edge-connected cubic planar graph in which each cycle spanning multiple fragments misses at least one vertex in each fragment.
 $$
\rho(\mathcal{C} 4 \mathcal{P})=\liminf _{G \in \mathcal{C} 4 \mathcal{P}} \frac{\operatorname{circ}(G)}{|V(G)|} \leq \lim _{k \rightarrow \infty} \frac{45 k}{46 k}=\frac{45}{46}
$$

Bounded face length

\qquad

Bounded face length

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bounded face length

*aagt
On-Hei S. Lo, Jens M. Schmidt, Nico Van Cleemput. Carol T. Zamfirescu Shortness coefificient of cyclically 4 -edge connected cubic graphs 41

Bounded face length

(uagt

Bounded face length

Increasing the genus

Theorem (Lo, Schmidt, VC, and Zamfirescu)
For every $g \geq 0$ and for every $\ell \geq 23$, the shortness coefficient of the class of cyclically 4-edge-connected cubic graphs of genus g with faces of length at most ℓ is at most $\frac{45}{46}$

On-Hei S. Lo, Jens M. Schmidt, Nico Van Cleemput. Carol T. Zamfirescu Shortness coefficient of cyclically 4-edge-connected cubic graphs 44

Increasing the genus

On-Hei S. Lo, Jens M. Schmidt, Nico Van Cleemput. Carol T. Zamfirescu \quad Shortness coefficient of cyclically 4 -edge-connected cubic graphs 45

General cubic graphs

Theorem (Lo, Schmidt, VC, and Zamfirescu)
Let G be a cyclically 4-edge-connected cubic graph on n vertices.
Then $\rho(\mathcal{C 4} 4) \leq \frac{\operatorname{circ}(G)-2}{n-2}$, and if there exist adjacent vertices v, w in G such that $G-v-w$ is planar, then $\rho(\mathcal{C} 4 \mathcal{P}) \leq \frac{\operatorname{circ}(G)-2}{n-2}$.

```
Corollary
\(\rho(\mathcal{C} 4) \leq \frac{7}{8}\) and \(\rho(\mathcal{C} 4 \mathcal{P}) \leq \frac{39}{40}\).
```

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Future work

- $\frac{3}{4} \leq \rho(\mathcal{C} 4 \mathcal{P}) \leq \frac{37}{38}$
- shrink the gap
- fragments are smallest possible
- missing more vertices
- quartic graphs?
- quintic graphs?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: